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Figure S1. Magnitude of the bias for short and long sample intervals. For each prior 

condition and each subject, the magnitude (i.e. absolute value) of the bias associated 

with the longest sample interval is plotted against the magnitude of the bias associated 

with the shortest sample interval. Across subjects and prior conditions, the magnitude of 

the bias was significantly larger for the longest sample interval compared to the shortest 

sample interval (Wilcoxon signed-rank test; p<0.001). This result is consistent with the 

observation that going from “Short” to “Intermediate” to “Long” prior conditions, the 

overall bias increased in magnitude (Fig. 2, main text). Black, dark red, and light red 

show the “Short”, “Intermediate”, and “Long” prior conditions respectively. 
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Figure S2. Performance of the Bayes-least-squares (BLS) and the maximum likelihood 

(ML) estimators in the time reproduction task. We simulated the behavior of BLS and 

ML observers in the time reproduction task consisting of 1000 trials in which the 

sample intervals were drawn from a discrete uniform prior distribution with 11 values 

ranging between 671 and 1023 ms (the “Intermediate” prior condition in the main 

experiment). For each observer model, we repeated the simulation while varying the 

measurement and production Weber fractions independently between 0.05 and 0.2 in 

steps of 0.01. Each dot in the plot corresponds to a particular pair of measurement and 

production Weber fractions. Production times within 10% of the sample intervals were 

considered “correct”. The scatter plot shows the proportion “correct” for the BLS 

observer versus the ML observer. The BLS observer, whose production times were 

biased towards the mean of the prior (Figure 5g, main text), consistently outperformed 

the ML observer.  



 

Jazayeri & Shadlen         4 

Figure S3. Positively reinforced trials for each prior condition. For each prior condition, 

the mean (solid dots), and standard error (error bars) of the proportion of trials 

positively reinforced (“correct”) across subjects is plotted against the sample interval. 

The overall range of the proportion of “correct” trials goes from ~0.35 to ~0.65. For 

each prior condition, the maximum (minimum) number of “correct” trials corresponded 

to the intermediate (extreme) sample intervals. Black, dark red, and light red show the 

“Short”, “Intermediate”, and “Long” prior conditions respectively. 
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Figure S4. Coefficient of variation (CV) of production times. The 6 panels show the 

CV (ratio of the standard deviation to the mean) of production times for the 6 subjects 

as a function of sample interval sorted by the prior condition. The filled circles are CV 

values computed from the subjects’ production times, and the solid lines are the CV 

values computed from simulations of the best-fitted Bayes least squares (BLS) model. 

Black, dark red, and light red show the “Short”, “Intermediate”, and “Long” prior 

conditions respectively. 
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Figure S5. Changes in BIAS and VAR with respect to the measurement and production 

noise. In the three top panels, arrows show the gradient of the overall bias (BIAS), and 

variability (VAR1/2) of production times (as defined in the main text) for the BLS 

observer model with respect to the measurement and production Weber fractions (wm 

and wp respectively) for the three prior conditions. The origin of each arrow corresponds 

to the wm and wp values at which the gradient was computed, and its horizontal/vertical 

components reflect changes in BIAS and VAR1/2 respectively (lower panel). Gradients 

with respect to wm (black arrows) have a strong horizontal component indicating that wm 

mainly controls the BIAS. In contrast, gradients with respect to wp (red arrows) are 

mostly vertical indicating that wp mainly controls the VAR1/2. In other words, wm and wp 

are both important parameters in the model as they capture distinct statistics of 

production times. 
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Figure S6. Improvement of performance during the learning stage. The plot shows the 

improvement in performance by computing the overall root mean square error (RMSE) 

of production times from data collected during the training session preceding the first 

test session. The plot shows the RMSE in the first 500 trials (learning stage), sorted into 

four bins each containing 125 trials. For each subject, RMSE values were normalized to 

RMSE value in the first bin. The graph shows a consistent improvement of performance 

(reduction in RMSE) over these 500 trials across subjects. For one of the subjects (S6), 

the improvement was clear after the 1st 125 trials. 
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S1 S2 S3 S4 S5 S6 

AIC 10087 10282 12226 8768 10226 8197 

wm  0.0935 0.1028 0.1436 0.1208 0.1053 0.0481 
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wp  0.0858 0.0635 0.0894 0.0583 0.0623 0.0625 

AIC 10178 10362 12252 8774 10309 8142 

wm  0.1019 0.1030 0.1431 0.1229 0.1047 0.0519 
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σ p  (ms) 69.60 54.64 75.92 47.66 50.11 49.31 

AIC 14505 18532 18647 15320 16530 15510 

σm  (ms) 69.45 77.26 80.53 70.29 64.59 69.01 
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wp  0.1563 0.2060 0.1923 0.1793 0.1607 0.1866 

 

Table S1. Model comparison: BLS models with different forms of measurement and 

production noise. In the original model (BLS1), the standard deviation (std) of both 

measurement and production noise was proportional to the base interval (constant 

Weber fraction). The three data rows associated with BLS1 show the Akaike 

Information Criterion (AIC), measurement Weber fraction (wm ), and production Weber 

fraction (wp ), respectively, for the six subjects (S1 to S6). In the BLS2 model, the 

measurement noise was associated with a constant Weber fraction (wm ), but the 

production noise was Gaussian with a fixed standard deviation (σ p ). The BLS3 model 



 

Jazayeri & Shadlen         9 

was the reverse with a constant Weber fraction for production (wp ), and a fixed 

standard deviation (σm ) for the measurement. For each subject, the model with the 

smallest AIC is underlined. The quality of fits for BLS1 and BLS2 were comparable 

although BLS1 was superior for 5 out of 6 subjects. BLS2 failed to capture the larger 

production time variance associated with longer sample intervals (Fig. S5). BLS3 was 

markedly inferior to both BLS1 and BLS2 models as it failed to capture the 

characteristic increase in bias associated with longer sample intervals (Fig. 5b,S1). Note 

that all models have two free parameters. 
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Table S2. BLS models with different forms of measurement and production noise. 

Parameters are defined in the caption of Table S1 and the Methods section of the main 

manuscript. 
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